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Human exposure to per- and polyfluoroalkyl substances (PFAS)
is ubiquitous.1 Prenatal and early-life exposures to PFAS have
been consistently associated with adverse health effects in chil-
dren, especially metabolic and immune system disorders, yet we
still know little about underlying mechanisms that might explain
these associations.2 The authors of a study recently published in
Environmental Health Perspectives3 assessed long-term changes
in genome-wide DNA methylation to increase our understanding
of these mechanisms.

Humans are exposed to mixtures of hundreds if not thousands
of PFAS.4,5 These chemicals, which are present in food, food
packaging, and many everyday consumer products, have been
detected in more than 98% of U.S. population serum samples.6 In
addition, an estimated 200 million Americans consume water
with PFAS concentrations exceeding 1 ng=L, one of several
health-based limits under regulatory consideration7 (currently
there is no national drinking water standard for PFAS).

For the present study, the investigators drew data from two
prospective pregnancy and birth cohorts. The first included 266
children born between 2003 and 2006 who were enrolled in the
Health Outcomes and Measures of the Environment (HOME)
Study. Participants lived around Cincinnati, Ohio, in an area that
has previously experienced PFAS contamination from industrial
sources.8 Data from 371 children in the Project Viva cohort,9

born between 1999 and 2002 near Boston, Massachusetts, were
used for the replication analysis.

Using the Illumina HumanMethylationEPIC BeadChip, Yun
Liu and colleagues measured genome-wide DNA methylation in
peripheral leukocytes collected from the cord blood of HOME
Study newborns and in blood samples from the same children at 12
years of age. DNA methylation is an epigenetic feature that regu-
lates gene expression without any alteration in DNA sequence.10 It
involves the transfer of methyl groups to short DNA stretches with
repeated cytosine and guanine nucleotides (CpG sites), most of
which are located in regions associatedwith gene expression.10

The researchers also measured four PFAS in maternal serum
samples collected in the HOME Study11: two legacy chemicals
that have been phased out (perfluorooctanoate and perfluorooctane
sulfonate) and two newer chemicals (perfluorononanoate and per-
fluorohexane sulfonate).12,13

The new study, like earlier reports,14–18 found that gestational
PFAS exposure was associated with differences in DNA methyla-
tion patterns, despite variations in study design, demographics,
measurement technology, and PFAS exposure levels. “For the
first time, our longitudinal study also demonstrates that these epi-
genetic changes may persist for more than a decade,” says Liu,
the study’s first author and a postdoctoral research associate at
Brown University.

A new study, like earlier reports, found that gestational PFAS exposure was associated with specific DNA methylation patterns in newborns. However, the new lon-
gitudinal study further demonstrated that methylation patterns observed at birth largely persisted for more than a decade. Images, left to right: © iStockphoto/Olga
Moreira; © Image Source Trading Ltd/Shutterstock.com.
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The researchers found that gestational PFAS exposure was sig-
nificantly associatedwithmethylation at 435CpG sites in newborns,
with distinct sites for each of the four PFAS. Most of these associa-
tions remained at approximately 12 years of age. Six of these sites—
two for perfluorooctanoate and four for perfluorononanoate—were
replicated in the Project Viva cohort. Although the specific CpG
sites differed from those reported previously,14–18 most methylation
differences observed in the earlier studies also occurred near genes
related to PFAS-associated health outcomes, such as cancers and
immune system, cardiovascular, and kidney disorders.

For Erin Bell, a professor of epidemiology at the University
at Albany who was not involved in the study, this consistency
across studies is compelling. “It suggests that gene expression
regulation via DNA methylation is a pathway that deserves fur-
ther study,” she says. “The new finding that some of these
changes may be stable over time will help us narrow down
hypotheses about shared biological mechanisms that may contrib-
ute to multiple PFAS-related health outcomes.”

To that end, the researchers are planning follow-up analyses
to see “whether DNA methylation near specific genes may medi-
ate the association between PFAS levels and markers of cardio-
metabolic health in the children of HOME Study participants,”
says Liu. Such mediation analyses19 have, for example, identified
DNA methylation as a potential link between fat and carbohy-
drate intake and metabolic traits.20

Lida Chatzi, a professor of population and public health sci-
ences at the University of Southern California who was not
involved in the study, applauds its longitudinal design. “Repeated
measurements of epigenetic and omics-based biomarkers in large
populations will be critical for investigating disease mecha-
nisms,” says Chatzi. “Ideally, this would also include moving
from blood to tissue-specific studies of PFAS-associated health
effects.”

Silke Schmidt, PhD, writes about science, health, and the environment from
Madison, Wisconsin.
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